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Abstract

The harmonic solution of a weakly non-linear second order differential equation governed the
dynamic behavior of a micro cantilever based on TM (Tapping mode) AFM (Atomic force
microscope) is investigated analytically by applying the method of multiple scales (MMS).
The modulation equations of the amplitude and the phase are obtained, steady state solutions,
frequency response equation, the peak amplitude with its location and the approximate analytical
expression are determined. The stability of the steady state solutions is calculated. Numerical
solutions of the frequency response equation and its stability condition are carried out for
different values of the parameters in the equation. Results are presented in a group of figures.
Finally discussion and conclusion are given.
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1 Introduction

Nowadays, the atomic force microscope (AFM) has become a useful tool for direct measurements
of intermolecular forces with atomic precision. AFM has been developed to a nearly ubiquitous
tool for studying Physics, chemistry, biology, medicine and engineering at the nano-scale [1]. AFM
could significantly impact many fabrication and manufacturing processes due to its advantages
such as 3D topography of nano-fabrication and metrology for micro-electro-mechanical systems
(MEMS) and it permits the imaging and probing of nano-mechanical properties as biopolymers
and viruses under physiological (liquid environment) conditions. The ability of AFM to measure
forces in the nano-Newton range under physiological conditions makes it a very attractive tool for
studying many biological interactions and intermolecular force governed phenomena [2–6]. Micro-
scale structural such as micro beams, micro plates and microbars are widely used in MEMS and
AFM. The experimental observations have indicated that the mechanical behavior of the micro/nano
structures is size-dependent. Since the classical continuum mechanics is incapable of capturing
the size effect and consequently unable to predict and interpret the size-dependent static and the
oscillation behavior observed in micro scale structure [7–10].

Most of classical dynamical systems and non-classical dynamical systems (Micro/Nano mechanical
systems), its mathematically study leads to a nonlinear second ordinary differential equations or a
set of a nonlinear coupled second ordinary differential equations. It is clear that the solutions of the
differential equations other than periodic solutions exist. However, the literature on the subject is
almost entirely devoted to the different types of periodic solutions (harmonic, sub, super, sub-super
and super-sub harmonic solutions).

In the past three decades, there has been great interest to obtain the different types of periodic
solutions of second order nonlinear ordinary differential equations. Elnaggar [11] investigated a
harmonic oscillation as solutions to physical systems governed by quasi-linear differential equation.
Elnaggar and Ahmed introduced a Perturbation method for a set of quasi-linear oscillatory systems
with variable natural frequency [12]. Elnaggar and El-Bassiouny [13] discussed the harmonic
solution of self-excited two coupled second order systems to multi-frequency excitations. Shooshtari
and Pasha Zanoosi [14] investigated the harmonic solution of second order weakly non-linear
differential equation that represent the vibration of a mass grounded system which includes two
linear and nonlinear springs in series by using multiple scales method [15, 16] and some analytical
relations have been obtained for natural frequency of oscillations and the effects of different para-
meters on the frequency response have been investigated. The harmonic solution of a forced single
degree of freedom (SDOF) nonlinear system was represented by Elnaggar et al. [17] by using the
method of multiple scales. Mazaheri et al [18] studied the nonlinear oscillation of a pendulum
wrapping and unwrapping on two cylindrical bases. Pilkee Kim et al. [19] investigated the harmonic
solution of the dynamic behaviors of a nonliner cantilever beam with tip mass subject to an axial
force and electrostatic excitation. Hanna Cho et al. [20] studied analytically the micro-mechanical
cantilever system integrated with geometric nonlinearity to determine its dynamic behavior and used
The method of multiple scales to find the dynamic response of the system at the fundamental mode
resonance of the micro cantilever. Kirrou and Belhaq [21] investigated analytically the harmonic
solution of Contact stiffness modulation in contact-mode atomic force microscopy. Elnaggar et
al. [22] studied harmonic and sub-harmonic solutions of a van der Pol equation subjected to weakly
non-linear parametric and forcing excitations. The non-linear governing equations of the non-linear
forced vibration of strain gradient micro beams are solved analytically by Vatankhah et al. [23] using
the perturbation techniques. Elnaggar and Khalil [24] investigated harmonic solution for non-linear
(SDOF) system with two distinct time-delays under an external excitation. Harmonic solution of
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single degree of freedom system which describe non-contact mode AFM and the stability of solution
are discussed by Kirrou and Belhaq [25]. Elnaggar et al. [26] discussed the electrostatically actuated
MEMS resonant sensors which represented by a modified Duffing-Van der Pol equation subjected to
weakly non-linear parametric and external excitations. The harmonic solution of weakly nonlinear
second order differential equation that represents a doubly clamped micro beam based resonator
driven by two electrodes by Han et al. [27]. Wen-Ming Zhang et al. [28] studied the dynamic
behavior of a micro cantilever based TM-AFM with squeeze film damping effects using numerical
simulation.

The interest of this work is to study the harmonic solution (i.e. periodic solution with period
equal to the period of external excitation) of a weakly non-linear second order differential equation
governed the motion of micro cantilever based TM-AFMs with squeeze film damping by using the
perturbation technique ( Method of multiple scales). The modulation equations of the amplitude
and the phase are determined. Steady state solutions and its stability are given. Peak amplitude
and its localization are determined. Numerical solutions for the frequency response equation and
the stability conditions are carried out. Results are presented in group of figures in which solid
(dashed) curves represented stable (unstable) harmonic solutions. Finally, discussion and conclusion
are given.

2 Formulation of the Problem and Perturbation Analysis

Consider the following non-linear second order differential equation

y′′ + ζy′ + y + βy3 = − d

(α+ y)2
+

dΣ6

30(α+ y)8
+ ϵ

(
fCosΩt− η

(α+ y)3
y′
)

(2.1)

where α, β, d, Σ, ζ, η, Ω , f and ϵ << 1 are constants. Eq.(2.1) represents the mathematical
model of the dynamic behavior of a micro cantilever based TM-AFM with squeeze film damping
effects [28].

By using Taylor expansion on the right side of Eq.(2.1), keeping only three terms of its result and
for applying a perturbation technique, we must take the non-linear terms of order ϵ then we get
the following weakly non-linear second order differential equation:

y′′ + ω2
0y + ϵ(2µy′ − α3y

2 + βy3 − α5yy
′ + α6y

2y′) = α1 + ϵfCosΩt (2.2)

where ω2
0 = 1− α2, 2µ = ζ + α4 = ζ + η

α3 , α1 = dΣ6

30α8 − d
α2 , α2 = 2d

α3 − 4dΣ6

15α9 , α3 = 6dΣ6

5α10 − 3d
α4 ,

α4 = η
α3 , α5 = 3η

α4 and α6 = 6η
α5 .

An approximate solution of Eq.(2.2) can be obtained by a number of perturbation techniques
(Nayfeh [15, 16]). In this paper we use the method of multiple scales (MMS). Acording to MMS,
the scaled times Tn can be introduced as:

Tn = ϵnt, n = 0, 1, 2, ... (2.3)

Differentiation with respect to the dimensionless time t we obtain

d

dt
= D0 + ϵD1 + ... &

d2

dt2
= D2

0 + 2ϵD0D1 + ... (2.4)

where Dn = ∂
∂Tn

. we assume a two scale expansion of the solution of Eq. (2.2) in the form

y(t; ϵ) = y0(T0, T1) + ϵy1(T0, T1) + ..., (2.5)
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Substituting Eqs. (2.4) and (2.5) into Eq. (2.2) then equating the coefficients of like powers of ϵ to
zero, we obtain a set of linear partial differential equations

D2
0y0 + ω2

0y0 = α1 (2.6)

D2
0y1 + ω2

0y1 = fCosΩt− 2µD0y0 − 2D1D0y0 − βy3
0 + α3y

2
0 + α5y0D0y0 − α6y

2
0D0y0 (2.7)

By solving the equation (2.6) for y0(T0, T1), we have

y0(T0, T1) = A(T1)e
iω0T0 + Ā (T1) e

−iω0T0 + Λ (2.8)

where i2 = 1, Ā is the complex conjugate of A and Λ = α1

ω2
0
substituting Eq. (2.8) into Eq. (2.7),

we get

D0
2y1 + ω2

0y1 =− eiT0ω0(A
(
iω0

(
α6

(
AĀ+ Λ2

)
− α5Λ + 2µ

)
+ 3AβĀ− 2α3Λ + 3βΛ2

)
+ 2iω0A

′) +
1

2
feiT0Ω + 2AĀ (α3 − 3βΛ) + Λ2 (α3 − βΛ) +NST.+ c.c.

(2.9)

where NST. denotes the terms does not produce secular terms and c.c. denotes the complex
conjugate.

3 Harmonic Solution

To analyze the harmonic solution, it is assumed that the frequency of the external excitation Ω and
the natural frequency ω0 of the corresponding linear system are closed to each other, i.e. Ω ≈ ω0.
Hence, this previous expression can be written as:

Ω = ω0 + ϵσ (3.1)

where σ is a detuning parameter. Then the excitation can be expressed in terms of T0 and T1 as

f cosΩt = f cos (ω0T0 + σT1) (3.2)

And so by eliminating the secular terms(coefficient of eiω0T0) from the Eq . (2.9) yields

A
(
−iω0

(
α6

(
AĀ+ Λ2)− α5Λ + 2µ

)
− 3AβĀ+ 2α3Λ

)
− 2iω0A

′ − 3AβΛ2 +
1

2
feiεσT0 = 0 (3.3)

Eq.(3.3) is a differential equation in complex form. In order to solve it,A(T1) can be expressed in
polar form as:

A =
1

2
a(T1)e

iβ1(T1) (3.4)

Where a and β1 are real functions of T1. By substituting Eq. (3.4) into Eq. (3.3) and separating
the real and imaginary parts respectively, we obtain a set of autonomous differential equations that
govern the amplitude a(T1) and the phase γ(T1)

a′ = 1
8ω0

{
ω0

(
a
(
−α6

(
a2 + 4Λ2

)
+ 4Λα5 − 8µ

))
+ 4fSinγ

}
aγ′ = 1

8ω0

{
a
(
−3a2β + 4Λ

(
2α3 − 3βΛ2

)
+ 8σω0

)
+ 4fCosγ

} (3.5)

where γ = σT1 − β1 and system (3.5) is known by the modulation equations of the amplitude and
the phase.
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4 Steady State Solution

Applying the steady state conditions, i.e., a′ = γ′ = 0, we have a set of algebraic equations for
amplitude a and phase γ of the steady state harmonic solution.

a
(
α6

(
a2 + 4Λ2

)
− 4Λα5 + 8µ

)
ω0 = 4fSinγ

a
(
3a2β − 4

(
Λ
(
2α3 − 3βΛ2

))
− 8σω0

)
= 4fCosγ

(4.1)

Squaring both equations in system (4.1) and adding the results, we get the frequency response
equation in the form

a2((−3β(a2 + 4Λ2) + 8Λα3))
2 − 16a2σ(3β(a2 + 4Λ2)− 8Λα3)ω0 + a2(64σ2 + (8µ− 4Λα5

+ a2α6 + 4Λ2α6)
2)ω2

0 − 16f2 = 0
(4.2)

solving equation (4.2)for σ, we obtain

σ =
1

8a2ω2
0

{a2ω0

(
3β

(
a2 + 4Λ2)− 8α3Λ

)
±

√
a2ω2

0 (16f
2 − a2ω2

0 (α6a2 + 4α6Λ2 − 4α5Λ + 8µ) 2)}
(4.3)

The peak amplitude would be verifying the following equation

16f2 − ω2
0a

2
p

(
4α6Λ

2 − 4α5Λ + α6a
2
p + 8µ

) 2 = 0 (4.4)

Then the corresponding value of σ is given from

σp =
3β

(
a2
p + 4Λ2

)
− 8α3Λ

8ω0
(4.5)

From Eqs. (4.4) and (4.5) we can conclude that

• The peak amplitude value doesnt affect with change β.

• The peak amplitude location is affected by changing β, α3,Λ and ω0.

Therefore, the approximate analytical expression of the harmonic solution is

y = a cos(Ωt− γ) +
α1

ω2
0

+O(ϵ) (4.6)

Where a and γ are the amplitude and phase of the steady state solutions.

The stability of the steady state solutions can be examined by introducing a small perturbation to
solutions obtained from system (3.5) i. e. by substituting

a = a0 + a1 (4.7)

γ = γ0 + γ1 (4.8)

Where a0 and γ0 represent the steady state solution a1 and γ1 represent small perturbations.
Substituting Eqs.(4.7) and (4.8) into system (3.5) by using the steady state condition and keeping
linear terms, one obtains

a′
1 =

1

8ω0
{−ω0

(
α6

(
3a2

0 + 4Λ2)− 4α5Λ + 8µ
)
a1 + a0

(
3β

(
a2
0 + 4Λ2)− 8α3Λ− 8a0σω0

)
γ1} (4.9)

γ′
1 =

1

8a0ω0
{
(
−9a2

0β + 8α3Λ− 12βΛ2 + 8σω0

)
a1 − a0ω0

(
α6

(
a2
0 + 4Λ2)− 4α5Λ + 8µ

)
γ1} (4.10)
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Substituting a1 = Γ1e
θT1 and γ1 = Γ2e

θT1 into equations (4.9) and (4.10). We get(
4Λ (3βΛ− 2α3) + 9a2

0β − 8σω0

)
Γ1 + a0ω0

(
a2
0α6 + 4α6Λ

2 − 4α5Λ + 8θ + 8µ
)
Γ2 = 0 (4.11)

ω0

(
3a2

0α6 + 4α6Λ
2 − 4α5Λ + 8θ + 8µ

)
Γ1 +

(
a0

(
8α3Λ− 3β

(
a2
0 + 4Λ2))+ 8a0σω0

)
Γ2 = 0 (4.12)

For the nontrivial solution the determinant of the coefficient matrix for Γ1 and Γ2 must vanish,
which leads to a quadratic equation for the eigenvalue θ.

θ =− 1

4

(
α6

(
a2
0 + 2Λ2)− 2α5Λ + 4µ

)
± 1

8ω2
0

√
ω2
0 (a

4
0 (α

2
6ω

2
0 − 27β2) + 48a2

0β (2α3Λ− 3βΛ2 + 2σω0)− 16 (2α3Λ− 3βΛ2 + 2σω0) 2)

(4.13)

The stability of the harmonic solution can be examined by evaluating the sign of the real part of
the eigenvalues. Consequently, a solution is stable if and only if the real parts of both eigenvalues
of equation (4.13) are less than zero.

5 Numerical Results and Discussion

In this section, the frequency response Eq. (16) and its stability condition (27) are solved numerically
for different values of the parameters. Results are presented in a group of Figs. (1-7) which represent
the relations between the amplitude of the periodic solutions a and the detuning parameter σ at
different values of the parameters. In all figures, the results obtained by computer simulation of
Eq. (16) are plotted where the solid lines refer to stable solutions and the dashed lines represent
the unstable ones.

Fig.1 shows the variation of the amplitude of the steady state solutions for different values of α.
This figure shows that, for small values of α, there is one stable solution. But by increasing the
parameter , the response amplitude bent to the right which gives hardening behavior and has two
branches (singlevalued curve and semioval) where the singlevalued curve has stable solutions and
the semi-oval has stable and unstable solutions. Also, the response amplitude loses stability via
saddle node bifurcation when α is increased. Since the existence of saddle node bifurcation leads
to the unwanted jump phenomena, so it prefers to use small values for α.

Fig.2 illustrates the influence of the coefficient of cubic term β on the response curves. We note that
for β = 0.0023, we have single stable symmetric solution. As β increases, the frequency response
curves consist of two branches; the left one is stable and the right one has two parts one of them
is stable and the other part is unstable. These curves are bent to the right; the bending leads to
multi-valued solutions and hence jump phenomena for certain values of σ exists. Also, the peak
amplitude is shifted to the right.

In Fig.3, for large values of η, we have one stable solution. By decreasing η, we have three solutions;
two curves are stable and one unstable; jump phenomena for certain values of σ and the inclination
towards the R.H.S.

From Fig.4, for small values of the excitation amplitude f , we have one symmetric stable solution.
By increasing f , we have multi-valued solutions for a certain value of σ which two of them are stable
solutions and one unstable. There exist Jump phenomena and the bend towards the R.H.S.

In Fig.5 indicates that for large values of Σ, we have one-valued solution. By decreasing Σ, we
have multi-valued solutions for a certain value of σ consist of two stable solutions and one unstable.
Jump phenomena and the bend to the R.H.S.
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Fig. 1. The frequency response curves for the parameters

β = 0.48, η = 0.0635, f = 65,Σ = 0.3, ζ = 0.01, d = 4/27 and for different values of α

Fig. 2.The frequency response curves for the parameters

α = 1.2, η = 0.0635, f = 65,Σ = 0.3, ζ = 0.01, d = 4/27, and for different values of β

Fig. 3. The frequency response curves for the parameters
α = 1.2, β = 0.48, f = 65,Σ = 0.3, ζ = 0.01, d = 4/27 and for different values of η

In Fig.6, we observe that the frequency response for different values of ζ. For large values of ζ, we
have single stable solution. By decreasing ζ, we have multi-valued solutions for a certain value of
σ; two stable solutions and one unstable. Jump phenomena and the bend towards the R.H.S.
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Fig.7 shows the effect of d on the frequency response indicating that by increasing d, we have multi-
valued solutions for a certain value of σ, two stable solutions and one unstable solution and jump
phenomena and the bend in the R.H.S.

Fig. 4. The frequency response curves for the parameters

α = 1.2, β = 0.48, η = 0.0635,Σ = 0.3, ζ = 0.01, d = 4/27 and for different values of f

Fig. 5. The frequency response curves for the parameters

α = 1.2, β = 0.48, η = 0.0635, f = 0.5, ζ = 0.01, d = 4/27 and for different values of Σ

Fig. 6. The frequency response curves for the parameters

α = 1.2, β = 0.48, η = 0.0635, , f = 65,Σ = 0.3, d = 4/27 and for different values of ζ
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Fig. 7. The frequency response curves for the parameters

α = 1.2, β = 0.48, η = 0.0635, f = 65,Σ = 0.3, ζ = 0.01 and for different values of d

6 Conclusion

In this paper, we have presented an analysis of harmonic solution for a weakly non-linear second
order differential equation which governed the dynamic behavior of a micro cantilever based on
TM (Tapping mode) AFM (Atomic force microscope) . The method of multiple scales is used
to determine two first order ordinary differential equations which describe the modulation of the
amplitude and the phase. Steady state solution and its stability are investigated. Peak amplitude
and its localization are determined. Numerical solutions of the frequency response equation and
the stability equation are carried out for different values of the parameters in the equation. It’s
known that the external excitation f and the squeeze damping η are important for the design of
dynamic of cantilever in TM-AFM so, we investigated the model (1) to obtain f and η values which
give the best results for that model ; the best result means obtaining stable solutions which haven’t
discontinues points then, we enhance the work of the system. Results are represented in group of
figures in which solid curves (dashed) are denoted stable (unstable) solutions.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems:
Application to molecular metrology and biological sciences. International Journal of Mechanics.
2004;14(8):907-945.

[2] Finot E, Passian A, Thundat T. Measurement of mechanical properties of cantilever shaped
materials. Sensors. 2008;8:3497-3541.

[3] Hersam MC. Monitoring and analyzing nonlinear dynamics in atomic force microscopy. Small.
2006;2:1122-1124.

[4] Yacoot A, Koenders L. Aspects of scanning force microscope probes and their effects on
dimensional measurement. J. Phys. D: Appl. Phys. 2008;41:103001.

[5] Lee SI, Howell SW, Raman A, Reifenberger R. Nonlinear dynamics of micro cantilevers in
tapping mode atomic force microscopy: A comparison between theory and experiment. Phys.
Rev. 2002;B66:115-409.

9



Elnaggar et al.; BJMCS, 15(4), 1-11, 2016; Article no.BJMCS.24725

[6] Korayem MH, Ghaderi R. Vibration response of a piezoelectrically actuated micro-cantilever
subjected to tipsample interaction. Scientia Iranica B. 2013;20(1):195-206.

[7] Batra RC, Porfiri M, Spinello D. Vibrations of narrow microbeams performed by an electric
field. Journal of Sound and Vibration. 2008;309(3): 600-612.

[8] Zhang Y, Zhao YP. Numerical and analytical study on the pull-in instability of micro-structure
under electrostatic loading. Sensors and Actuators A. 2006;127:366-380.

[9] Kahrobaiyan MH, Rahaeifard M, Ahmadian MT. Nonlinear dynamic analysis of a V-shaped
micro cantilever of an atomic force microscope. Applied Mathematical Modelling. 2011;35:5903-
5919.

[10] Kahrobaiyan MH, Ahmadian MT, Haghighi P, Haghighi P. Sensitivity and resonant frequency
of an AFM with sidewall and top-surface probes for both flexural and torsional modes.
International Journal of Mechanical Sciences. 2010;52(10):1357-1365.

[11] Elnaggar AM. Harmonic and sub-harmonic oscillation, as solutions to physical systems
governed by quasi-linear differential equation ẍ+k1x+k2f(t)x
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